

AFRL-IF-RS-TR-2005-121
Final Technical Report
April 2005

RAINBOW: ARCHITECTURE-BASED
ADAPTATION OF COMPLEX SYSTEMS

Carnegie Mellon University

Sponsored by
Defense Advanced Research Projects Agency
DARPA Order No. K501

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.

The views and conclusions contained in this document are those of the authors and should not be
interpreted as necessarily representing the official policies, either expressed or implied, of the
Defense Advanced Research Projects Agency or the U.S. Government.

AIR FORCE RESEARCH LABORATORY
INFORMATION DIRECTORATE

ROME RESEARCH SITE
ROME, NEW YORK

STINFO FINAL REPORT

 This report has been reviewed by the Air Force Research Laboratory, Information
Directorate, Public Affairs Office (IFOIPA) and is releasable to the National Technical
Information Service (NTIS). At NTIS it will be releasable to the general public,
including foreign nations.

 AFRL-IF-RS-TR-2005-121 has been reviewed and is approved for publication

APPROVED: /s/

DEBORAH A. CERINO
Project Engineer

 FOR THE DIRECTOR: /s/

JAMES A. COLLINS, Acting Chief
Advanced Computing Division
Information Directorate

REPORT DOCUMENTATION PAGE
Form Approved

OMB No. 074-0188
Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and
maintaining the data needed, and completing and reviewing this collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information, including
suggestions for reducing this burden to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302,
and to the Office of Management and Budget, Paperwork Reduction Project (0704-0188), Washington, DC 20503
1. AGENCY USE ONLY (Leave blank)

2. REPORT DATE
APRIL 2005

3. REPORT TYPE AND DATES COVERED
Final Jun 00 – Oct 03

4. TITLE AND SUBTITLE
RAINBOW: ARCHITECTURE-BASED ADAPTATION OF COMPLEX
SYSTEMS

6. AUTHOR(S)
David Garlan and
Bradley Schmerl

5. FUNDING NUMBERS
C - F30602-00-2-0616
PE - 62302E
PR - DASA
TA - 00
WU - 01

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
Carnegie Mellon University
5000 Forbes Avenue
Pittsburgh Pennsylvania 15213-3890

8. PERFORMING ORGANIZATION
 REPORT NUMBER

N/A

9. SPONSORING / MONITORING AGENCY NAME(S) AND ADDRESS(ES)
Defense Advanced Research Projects Agency AFRL/IFT
3701 North Fairfax Drive 525 Brooks Road
Arlington Virginia 22203-1714 Rome New York 13441-4505

10. SPONSORING / MONITORING
 AGENCY REPORT NUMBER

AFRL-IF-RS-TR-2005-121

11. SUPPLEMENTARY NOTES

AFRL Project Engineer: Deborah A. Cerino/IFT/(315) 330-1445/ Deborah.Cerino@rl.af.mil

12a. DISTRIBUTION / AVAILABILITY STATEMENT
APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.

12b. DISTRIBUTION CODE

13. ABSTRACT (Maximum 200 Words)
One increasingly important technique for improving software-based system integrity is providing systems with the ability
to adapt themselves at run time to handle such things as resource variability, changing user needs, and system faults.
Traditionally system self repair has been handled within the application, and at the code level. An alternative approach,
and the approach taken under this effort, is to use architectural models, maintained at run time, as the basis for system
reconfiguration and repair. An architecture can provide a global perspective on the system, enabling high-level
interpretation of system problems. This in turn, allows one to better identify the source of the problem. Moreover,
architectural models can make integrity constraints explicit, helping to ensure the validity of any system change. This
effort demonstrated how to generalize architecture-based adaptation by making the choice of architectural style an
explicit design parameter in the framework. This allows system designers to pick an appropriate architectural style to
expose properties of interest, provide analytic leverage and map cleanly to existing implementations and middleware.

15. NUMBER OF PAGES
49

14. SUBJECT TERMS
Architecture-Based Adaptation, System Self-Repair

16. PRICE CODE

17. SECURITY CLASSIFICATION
 OF REPORT

UNCLASSIFIED

18. SECURITY CLASSIFICATION
 OF THIS PAGE

UNCLASSIFIED

19. SECURITY CLASSIFICATION
 OF ABSTRACT

UNCLASSIFIED

20. LIMITATION OF ABSTRACT

UL
NSN 7540-01-280-5500 Standard Form 298 (Rev. 2-89)

Prescribed by ANSI Std. Z39-18
298-102

i

Table of Contents
1. Introduction... 1

1.1. Innovative Claims .. 2

2. Approach and Framework... 4

2.1. Architectures and Architectural Style.. 7

2.1.1. Analytical Methods for Architectures... 9

2.2. Monitoring ... 9

2.3. Analysis.. 10

2.4. Reconciliation .. 10

2.4.1. Adaptation Operators .. 11

2.4.2. Repair Strategies ... 12

2.5. Propagation .. 13

3. Tool support .. 13

3.1. Gauge Infrastructure .. 13

3.1.1. Gauge Definition... 14

3.1.2. Implementation ... 17

3.1.3. Gauge Workbench .. 20

3.2. Gauges.. 20

3.2.1. Network Performance Gauges .. 20

3.2.2. Protocol Gauges .. 21

3.2.3. Architecture Gauges.. 21

3.3. Repair... 21

3.4. Integration with Acme Tools ... 21

3.4.1. Changes to Existing Tools ... 22

 3.4.2. New Architecture Tools... 23

 3.4.3. Integrating Architectural Tools.. 24

4. Case Studies .. 26

4.1. Performance-based Adaptation of a Web-based Client-Server System 26

4.1.1. Defining a Client-Server Architectural Style.. 26

4.1.2. Using M/M/m Performance Analysis to Set Initial Conditions................ 27

4.1.3. Defining Adaptation Operators... 30

ii

4.1.4. Defining Repair Strategies to Maintain Performance............................... 30

4.1.5. Style-Based Monitoring.. 32

4.1.6. Mapping Architectural Operators to Implementation Operators 33

4.1.7. Putting the Pieces Together .. 33

4.1.8. Results... 34

4.2. Performance Adaptation of GeoWorlds... 39

5. Conclusions and Future Work .. 39

6. Publications... 40

References... 41

iii

List of Figures.

Figure 1. Adaptation Framework..5

Figure 2. Deployment Architecture of Example System. ...5

Figure 3. Gauge Infrastructure..9

Figure 4. Gauge Example. ..14

Figure 5. Attaching Gauges to Systems in Acme. ..18

Figure 6. Gauge Infrastructure Implementation..19

Figure 7. Generating Gauges from Acme Descriptions..20

Figure 8. Integration of Architecture Tools. ...25

Figure 9. Client/Server Style Definition. ..26

Figure 10. Client/Server Style Extended for Analysis..27

Figure 11. Architectural Model of Example System. ...28

Figure 12. Repair Tactic for High Latency...31

Figure 13. Model of System After Low Bandwidth Repair......................................34

Figure 14. The Experimental Testbed...35

Figure 15. Bandwidth and Server Load Generation. ..36

Figure 16. Average Latency for Control...37

Figure 17. Server Load for Control...37

Figure 18.Available Bandwidth in Control...37

Figure 19. Average Latency under Repair..37

Figure 20. Server Load under Repair..37

Figure 21.Available Bandwidth with Repair. ...37

List of Tables

TABLE 1. AN EXAMPLE OF GAUGE TYPE SPECIFICATION... 16
TABLE 2. AN EXAMPLE OF GAUGE INSTANCE SPECIFICATION. .. 17
TABLE 3. PERFORMANCE EQUATIONS FROM [4]..29
TABLE 4. MAPPING BETWEEN ARCHITECTURE AND IMPLEMENTATION OPERATIONS.33

1

1. Introduction
One increasingly important technique for improving software-based system integrity is
providing systems with the ability to adapt themselves at run time to handle such things
as resource variability, changing user needs, and system faults. In the past, systems that
supported such self-adaptation were rare, confined mostly to domains like
telecommunications switches or deep space control software, where taking a system
down for upgrades was not an option, and where human intervention was not always
feasible. However, today more and more systems have this requirement, including e-
commerce systems and mobile embedded systems. Such systems must continue to run
with only minimal human oversight, and cope with variable resources (bandwidth, server
availability, etc.), system faults (servers and networks going down, failure of external
components, etc.), and changing user priorities (high-fidelity video streams at one
moment, low fidelity at another, etc.).

Traditionally system self-repair has been handled within the application, and at the
code level. For example, applications typically use generic mechanisms such as exception
handling or timeouts to trigger application-specific responses to an observed fault or
system anomaly. Such mechanisms have the attraction that they can trap an error at the
moment of detection, and are well-supported by modern programming languages (e.g.,
Java exceptions) and run time libraries (e.g., timeouts for Remote Procedure Calls).
However, they suffer from the problem that it can be difficult to determine what the true
source of the problem is, and hence what kind of remedial action is required. Moreover,
while they can trap errors, they are not well-suited to recognizing “softer” system
anomalies, such as gradual degradation of performance over some communication path,
or transient failures of a server.

Recently a number of researchers have proposed an alternative approach in which
system models – and in particular, architectural models – are maintained at run time and
used as a basis for system reconfiguration and repair [17]. The Dynamic Assembly for
Systems Adaptability, Dependability, and Assurance (DASADA) Project, funded by
DARPA, seeks to mature this approach to enable mission-critical systems to meet the
high assurance, dependability, and adaptability requirements of the US Department of
Defense. The Rainbow Project, conducted at Carnegie Mellon University, sought to
provide basic architecture infrastructure for this approach, in addition to applying the
technique to systems where performance was an important requirement.

Architecture-based adaptation has a number of nice properties. As an abstract model,
an architecture can provide a global perspective on the system, enabling high-level
interpretation of system problems. This in turn allows one to better identify the source of
some problem. Moreover, architectural models can make “integrity” constraints explicit,
helping to ensure the validity of any system change.

2

A key issue in making this approach work is the choice of architectural style used to
represent a system.1 Previous work in this area has focused on the use of specific styles
(together with their associated description languages and toolsets) to provide intrinsically
modifiable architectures. Taylor et al. use hierarchical publish-subscribe via C2 [16,19];
Gorlick et al. use a dataflow style via Weaves [8]; and Magee et al. use bi-directional
communication links via Darwin [11,12].

The specialization to particular styles has the benefit of providing strong support for
adapting systems built in those styles. However, it has the disadvantage that a particular
style may not be appropriate for an existing implementation base, or it may not expose
the kinds of properties that are relevant to adaptation. For example, different styles may
be appropriate depending on whether one is using existing client-server middleware,
Enterprise JavaBeans (EJB), or some other implementation base. Moreover, different
styles may be useful depending on whether adaptation should be based on issues of
performance, reliability, or security.

In the research conducted under this grant, we demonstrated how to generalize
architecture-based adaptation by making the choice of architectural style an explicit
design parameter in the framework. This added flexibility allows system designers to
pick an appropriate architectural style in order to expose properties of interest, provide
analytic leverage, and map cleanly to existing implementations and middleware.

The key technical idea is to make architectural style a first class run time entity. As
we will show, formalized architectural styles augmented with certain run time
mechanisms provide a number of important capabilities for run time adaptation: (1) they
define a set of formal constraints that allow one to detect system anomalies; (2) they are
often associated with analytical methods that suggest appropriate repair strategies; (3)
they allow one to link stylistic constraints with repair rules whose soundness is based on
corresponding (style-specific) analytical methods; (4) they provide a set of operators for
making high-level changes to the architecture; (5) they prescribe what aspects of a system
need to be monitored.

1.1. Innovative Claims
In our proposal, we suggested the development of new capabilities to reduce the cost and
improve the reliability of making systematic changes to complex systems. The
technology developed with the support of this grant enables significant improvements in
our ability to:

1. Detect dynamic (run-time) properties of complex, distributed systems.
A monitoring infrastructure consisting of a set of probes that collects status and

performance information for networks and endpoints was developed. The information
includes both static information that is useful for configuration-time adaptation and
dynamic information that can be used to guide adaptation decisions at run-time.

A new set of mechanisms, termed gauges, aggregate the results of multiple probes
into information that is directly relevant to architectural analysis. The Rainbow

1 By “architectural style” we mean a vocabulary of component types and their interconnections, together
with constraints on how that vocabulary is used.

3

project developed the DASADA Gauge Infrastructure, which provides a common
basis for gauges developed by other DASADA researchers to communicate
monitoring information about a running system to adaptors that dynamically adapt a
software system. Additionally, Rainbow provided gauges and probes to report
information about network performance, as well as a system called DiscoTect for
discovering the runtime architecture of a target system.

2. Determine whether those properties violate critical assumptions of a running
system.
New run-time monitoring infrastructure allows a system to introspect about its

own properties, determining when existing system behavior is inconsistent with
expected operating assumptions and parameters. This permits the system to rapidly
detect, before system failure or severe degradation, when it needs to be adjusted or
reconfigured. The Rainbow project retargeted the Acme toolset to provide runtime
architecture reporting, constraint analysis and detection of violations of architectural
rules at runtime.

3. Automate system adaptation and repair in response to violations of
architectural assumptions.

 “Repair strategies” associated with the architectural style permit the system to
automatically adapt itself to certain classes of violation. In Rainbow, we provide a
specific set of repair strategies tuned to performance enhancement (in combination
with the performance gauges noted above). We also provide a repair engine, called
Tailor, that can be used to execute repair strategies to change the architecture and
propagate those repairs to the running system.

In addition to on-line repairs, off-line repair actions are propagated into the
system implementations using a new generation approach, termed “compositional
connectors.” Using it, one adapts interaction mechanisms by incrementally adding
new capabilities to support changes in performance, security, or reliability.

The ability to introspect relies on a run-time representation of system architecture
models and constraints over those models, building on the Acme Architecture
Description Language (ADL) infrastructure developed under DARPA’s Evolutionary
Design of Complex Systems (EDCS) program. In addition to tools built specifically for
this project, this infrastructure enables the integration of analysis tools developed under
DASADA and EDCS, to detect constraint violation.

In combination, these capabilities radically improve the ability to (a) handle system
changes with respect to the performance-oriented gauges supported by our technology,
and (b) incorporate additional gauges and system adaptation rules produced by other
DASADA-funded projects. This dramatically reduces the need for user intervention in
adapting systems to achieve quality goals through reliable, architecture-driven self-
adaptation.

We have evaluated the technologies in the context of distributed systems, which
typically depend heavily on the performance properties of the run-time environment, and
which exhibit considerable variability in their architectural requirements. Our
demonstration testbed, built on standard network platforms and using standard

4

application components, allows us to benchmark our new capabilities for adaptation, and
determine both the strengths and limitations of our mechanisms.

In Section 2 of this report, we describe the technical contributions of our work in
terms of specifying architectures and using them for run time adaptation. In Section 3, we
describe the tool support that we have developed for applying our approach. Case studies
and evaluations are described in Section 4. Finally, in Section 5 we discuss our
conclusions and areas of future research.

2. Approach and Framework
Our starting point is an architecture-based approach to self-adaptation, similar to [17] (as
illustrated in Figure 1): In a nutshell, an executing system (1) is monitored to observe its
run time behavior; (2) Monitored values are abstracted and related to architectural
properties of an architectural model; (3) Changing properties of the architectural model
trigger architectural analysis to determine whether the system is operating within an
envelope of acceptable ranges; (4) Unacceptable operation causes repairs, which (5)
adapt the architecture; (6) Architectural changes are propagated to the running system.

The key new feature in this framework is the use of style as a first class entity that
allows one to tailor the framework to the application domain, and determines the actual
behavior of each of the parts. Specifically, style is used to determine (a) what properties
of the executing system should be monitored, (b) what constraints need to be evaluated,
(c) what to do when constraints are violated, and (d) how to carry out repair in terms of
high-level architectural operators. In addition we need to introduce a style-specific
translation component to manage the transactional nature of repair and map high-level
architecture operations into lower-level system operations.

To illustrate how the approach works, consider a common class of web-based client
server applications that are based on an architecture in which web clients access web
resources by making requests to one of several geographically distributed server groups
(see Figure 2). Each server group consists of a set of replicated servers, and maintains a
queue of requests, which are handled in First In First Out (FIFO) order by the servers in
the server group. Individual servers send their results directly to the requesting client.

5

The organization that manages the overall web service infrastructure wants to make
sure that two inter-related system qualities are maintained. First, to guarantee quality of
service for the customer, the request-response latency for clients must be under a certain
threshold (e.g., 2 seconds). Second, to keep costs down, the set of currently active servers
should be kept as loaded as possible, subject to the first constraint.

Since access loads in such a system will naturally change over time, the system has
two built-in low-level adaptation mechanisms. First, we can activate a new server in a

Architecture Manager

 Architectural Style

Analyzer

Arch.
Model

G
en

er
ic

AP

I

Repair Handler

Style API
Interpreter

Translator

Runtime
Manager

Executing
System

 11

22

 33

 44 55

 66

Monitoring
Mechanisms

Figure 1. Adaptation
Framework.

Figure 2. Deployment Architecture of Example
System.

Client 6

Client 1

Client 4

Req-queue

Server 1
Server 2

Server 3
ServerGrp1

Client 3

Client 5
Replies to
Client2

Client 2

Requests

6

server group or deactivate an existing server. Second, we can cause a client to shift its
communication path from one server group to another.

The challenge is to engineer things so that the system adapts appropriately at run
time. Using the framework described above, here is how we would accomplish this. First,
given the nature of the implementation, we decide to choose an architectural style based
on client-server in which we have clients, server groups, and individual servers, together
with the appropriate client-server connectors. Next, because performance is the key
quality attribute of concern, we adapt that style so that it captures performance-related
properties and makes explicit constraints about acceptable performance. Here, client-
server latency and server load are the key properties, and the constraints are derived from
the two desiderata listed above. Furthermore, because of the nature of communication we
are able to pick a style for which formal performance analyses exist – in this case
M/M/m-based queuing theory.

To make the style useful as a run time artifact we now augment the style with two
specifications: (a) a set of style-specific architectural operators, and (b) a collection of
repair strategies written in terms of these operators and associated with the style’s
constraints. The operators and repair strategies are chosen based on an examination of the
analytical equations, which formally identify how the architecture must change in order
to affect certain parameters (like latency and load).

There are now only two remaining problems. First, we must get information out of
the running system. To do this we employ low-level monitoring mechanisms that
instrument various aspects of the executing system. We use existing off-the-shelf
performance-oriented “system probes,” using probes from other DASADA researchers
(such as Active Interface Development Environment (AIDE) from George Heineman at
Worcester Polytechnic Institute [9] and ProbeMeister from Dave Wells at Object
Services and Consulting, Inc. [21]). To bridge the gap between low-level monitored
events and architectural properties we use a system of adapters, called “gauges,” which
aggregate low-level monitored information and relate it to the architectural model. For
example, we have to aggregate various measurements of the round-trip time for a request
and the amount of information transferred to produce bandwidth measurements at the
architectural level.

The second problem is to translate architectural repairs into actual system changes.
To do this we write a simple table-driven translator that can interpret architectural repair
operators in terms of the lower level system modifications. This translator can interact
with Workflakes from Gail Kaiser at Columbia University
(http://www.psl.cs.columbia.edu/old/WorkFlakes/) to effect changes in the actual system.

In the running system the monitoring mechanisms update architectural properties,
causing reevaluation of constraints. Violated constraints (high client-server latencies, or
low server loads) trigger repairs, which are carried out on the architectural model, and
translated into corresponding actions on the system itself (adding or removing servers,
and changing communication channels). The existence of an analytic model for
performance (M/M/m queuing theory) helps guarantee that the specific modification
operators for this style are sound. Moreover, the matching of the style to the existing

7

system infrastructure helps guarantee that relevant information can be extracted, and that
architectural changes can be propagated into the running system.

In the remainder of this section, we discuss in more detail each aspect of the
architectural adaptation framework.

2.1. Architectures and Architectural Style
The centerpiece of our approach is the use of stylized architectural models. Although
there are many modeling languages and representation schemes for architecture, we adopt
a simple approach in which an architectural model is represented as an annotated,
hierarchical graph.2 Nodes in the graph are components, which represent the principal
computational elements and data stores of the system. Arcs are connectors, which
represent the pathways of interaction between the components. Components and
connectors have explicit interfaces (termed ports and roles, respectively). To support
various levels of abstraction and encapsulation, we allow components and connectors to
be defined by more detailed architectural descriptions, which we call representations.

To account for semantic properties of the architecture we allow elements in the graph
to be annotated with extensible property lists. Properties associated with a connector
might define its protocol of interaction, or performance attributes (e.g., delay,
bandwidth). Properties associated with a component might define its core functionality,
performance attributes (e.g., average time to process a request, load, etc.), or its
reliability.

Representing an architecture as an arbitrary graph of generic components and
connectors has the advantage of being extremely general and open ended. However, in
practice there are a number of benefits to constraining the design space for architectures
by associating a style with the architecture. An architectural style typically defines a set
of types for components, connectors, interfaces, and properties together with a set of rules
that govern how elements of those types may be composed.

Requiring a system to conform to a style has many benefits, including support for
analysis, reuse, code generation, and system evolution [6, 18, 23]. Moreover, the notion
of style often maps well to widely-used component integration infrastructures (such as
Enterprise JavaBeans, High Level Architecture, Common Object Request Broker
Architecture), which prescribe the kinds of components allowed and the kinds of
interactions that may take place between them.

As a result, a number of Architecture Description Languages (ADLs) and their
toolsets have been created to support system development and execution for specific
styles. For example, C2 [19] supports a style based on hierarchical publish-subscribe;
Wright [1, 2] supports a style based on formal specification of connector protocols;
MetaH [20] supports a style based on real-time avionics control components.

In our research we adopt the view that while choice of style is critical to supporting
system design, execution, and evolution, different styles will be appropriate for different

2 This is the core architectural representation scheme adopted by a number of ADLs, including Acme [8],
xArch [3], xADL [5], ADML [15], and SADL[14].

8

systems. For example, a client-server system, such as the one in our example, will most
naturally be represented using a client-server style. In contrast, a signal processing system
would probably adopt a dataflow-oriented pipe-filter style. While one might encode these
systems in some other style, the mapping to the actual system would become much more
complex, with the attendant problems of ensuring that any observation derived from the
architecture has a bearing on the system itself.

For this reason, two key elements of our approach are the explicit definition of style
and its accessibility at run time for system adaptation. Specifically, we define a style as a
system of types, plus a set of rules and constraints. The types are defined in Acme [7], a
generic ADL that extends the above structural core framework with the notion of style.
The rules and constraints are defined in Armani [13] a first-order predicate logic similar
to the Unified Modeling Language’s Object Constraint Language (OCL), augmented with
a small set of architectural functions. These functions make it easier to define logical
expressions that refer to things like connectedness, type conformance, and hierarchical
relationships.3 We say that a system conforms to a style if it satisfies all of the constraints
defined by the style (including type conformance).

An example of an architectural style is a pipe-filter style. Elements in this style
include filter components, which receive data and transform that data, and pipe
connectors, which transfer data between filters. In Acme, the definition of a filter
component type looks like:

This type definition would be instantiated in a given systems by creating specific
filter components. Any component conforming to the FilterT type would have at least the
throughput property, and the two ports stdIn and stdOut, which in turn need to conform to the
port types InputPortT and OutputPortT.

Being able to define styles in Acme gives some reuse in our framework. We envision
a suite of general styles (along with monitoring and repair capabilities) from which a
style can be chosen to be plugged into our framework. An architect would then need to
model the system according to this style, perhaps extending the style or utilizing other
styles to model attributes of interest.4

3 Details on Acme and Armani can be found elsewhere [12, 26]. Here we focus on how those representation
schemes, originally developed as design-time notations, are extended and used to support run time
adaptation.
4 A style would also supply operators to modify the style, and perhaps repair facilities. These are discussed
later in the section.

Component type Filter T = {
 Property throughput : float;
 Port stdIn : InputPortT;
 Port stdOut : OutputPortT;
}

9

2.1.1. Analytical Methods for Architectures
As we argued above, one of the main benefits of style-based architectural modeling is the
ability to use analytical methods to evaluate properties of a system’s architectural design.
For example, MetaH uses real-time schedulability analysis [20], and Wright uses protocol
model checking [1]. Use of the appropriate analytical methods helps us to focus on the
aspects of the architecture that we need to model, to identify the constraints of the style,
and to guide the error resolution when constraints are violated. For instance, in a Service-
Coalition style, cost analysis of the system indicates which services to monitor. Based on
what factors drive cost—for example, performance—we can add to or refine cost-based
constraints to take those factors into account. This can help guide us to the cause of error
when a cost constraint fails. If performance were a factor, a cost violation in a particular
component would suggest that we check the performance properties of that component
for the cause. Furthermore, cost-benefit analysis would tell us how to trade-off cost with
performance to find a better service during adaptation.

An analytical method can potentially be applied to several different styles. For
example, one might use queuing theoretic analysis in a Client-Server style or a Pipe-Filter
style, and cost-benefit analysis can be applied to almost any style. When applied to a
particular style, however, the analytical method takes on the vocabulary of that style, and
often augments elements of that style with analysis-specific properties. For example,
queuing theoretic analysis augments a server component with properties such as load,
service time, etc.

2.2. Monitoring
In order to provide a bridge from system level behavior to architecturally-relevant
observations, we have defined a three-level approach illustrated in Figure 3. This
monitoring infrastructure is described in more detail in Section 3: here we summarize the
main features, stressing the connection with style specifications.

The lowest level is a set of probes, which are “deployed” in the target system or
physical environment.5 Probes monitor the system and announce observations via a

5 For monitoring, we utilize the terminology defined by the DASADA program.

Abstraction
/ model

Target system
/ environment

Gauge
consumers

Gauges

Probes

Gauge
reporting bus

Probe bus

report report

observation observation

Figure 3. Gauge
Infrastructure.

10

“probe bus.” At the second level a set of gauges consumes and interprets lower-level
probe measurements in terms of higher-level model properties. Like probes, gauges
disseminate information via a “gauge reporting bus.” The top-level entities in Figure 3
are gauge consumers, which consume information disseminated by gauges. Such
information can be used, for example, to update an abstraction/model, to make system
repair decisions, to display warnings and alerts to system users, or to show the current
status of the running system.

The separation of the monitoring infrastructure into these parts helps isolate separable
concerns. Probes are highly implementation-specific, and typically require detailed
knowledge of the execution environment. Gauges are model-specific. They need only
understand how to convert low-level observations into properties of more abstract
representations, such as architectural models. Finally, gauge consumers are free to use the
interpreted information to cause various actions to occur, such as displaying warnings to
the user or automatically carrying out repairs.

In the context of architectural repair, we use the architectural style to inform us where
to place gauges. Specifically, for each constraint that we wish to monitor, we must place
gauges that dynamically update the properties over which the constraint is defined. In
addition, our repair strategies may require additional monitored information to pinpoint
sources of problems and execute repair operations.

While it may be necessary to develop gauges for each different style, and probes for
each specific implementation, we can gain some leverage by using general monitoring
technologies. For example, if the concerns are bandwidth or latency then it is possible to
use general network gauges (for example, those based on Remos [10]) to report the
bandwidth, regardless of the adaptation. Similarly, it is possible to use general probe
technology to ameliorate the task of writing probes for particular implementations. For
example, while it might be necessary to choose which particular method calls need to be
monitored in a particular implementation, it is possible to use existing technologies like
ProbeMeister [21] to generate the actual probes, without writing any additional code.

2.3. Analysis
In order to determine if repair is needed, it is necessary to analyze the architecture in the
context of monitored information. As described in the previous section, monitoring
information is stored as properties in the architecture. Analysis in the Rainbow
framework is conducted by evaluating architectural constraints represented in Armani
[13]. Whenever a property value changes, Armani rules are re-evaluated; if the
constraints fail, then repair strategies associated with the constraints are triggered. This is
described in the next section.

2.4. Reconciliation
The representation schemes for architectures and style outlined above were originally
created to support design-time development tools. In this section we show how styles can
be augmented to function as run time adaptation mechanisms.

11

Two key augmentations to style definitions are needed to make them useful for run
time adaptation: (1) the definition of a set of adaptation operators for the style, and (2) the
definition of a set of repair strategies.

2.4.1. Adaptation Operators
The first extension is to augment a style description with a set of operators that define the
ways one can change instances of systems in that style. Such operators determine a
“virtual machine” that can be used at run time to adapt an architectural design.

Given a particular architectural style, there will typically be a set of natural operators
for changing an architectural configuration and querying for additional information. In
the most generic case, architectures can provide primitive operators for adding and
removing components and connectors [22]. However, specific styles can often provide
much higher-level operators that exploit the restrictions in that style and the intended
implementation base. For example, a client-server style might support an operation to
replicate a server to improve performance, whereas a pipe-filter style might support an
operation to improve performance by adding a filter to compress the data on a pipe.

Two key factors determine the choice of operators for a style. First is the style itself –
the kinds of components, connectors and configuration rules. Based on its constraints, a
style can both limit the set of operations, and also suggest a set of higher-level operators.
For example, if a style specifies that there must be exactly one instance of a particular
type of component, such as a database, the style should not provide operations to add or
remove an existing instance of this type. On the other hand, if another constraint says that
every client component in the system must be attached to the (unique) database, it would
make sense that a “new-client” operation would automatically create a new client-
database connector and attach it between the new component and the database. These
style-specific operators are defined in terms of style-neutral operators such as “add a
component” or “remove a connector.” The definition of these style-neutral operations can
be based on [22] or [23].

The second factor is the feasibility of carrying out the change. To evaluate feasibility
requires some knowledge of the target implementation infrastructure. It makes no sense
to prescribe an architectural operator that has no hope of ever being carried out on the
running system. For some styles, the relation is defined by construction (since
implementations are generated from architectures). More generally, however, the style
designer may have to make certain assumptions about the availability of implementation-
changing operators that will be provided by the run time environment of the system.

It is important to note that, while it is necessary to write adaptation operators for each
style, we anticipate that this will only need to be done once for each style. A style should
provide all operations that make sense in changing the style, regardless of any particular
adaptation that might occur. For example, for a Client-Server style, the moveClient operator
will be the same regardless of the adaptation being performed.

While adaptation operators are specific to styles we can, however, describe some,
commonly occurring operators. In general, every style would be expected to have some
form of add and remove, as well as possibly activate and deactivate operators for
component instances (e.g., addClient, removeFilter, activateServer, deactivateDB). A style would also be

12

expected to have add/remove or connect/disconnect operators to setup connectors
between components (e.g., addRPC, removeVideoStream, connectPipe, disconnectSQL). In addition, there
will typically be operators to create, delete, and modify element properties (e.g.,
createLatencyProperty, deleteFrameRateProperty, modifyCompressionProperty). Finally, depending on the style,
there might conceivably be operators for changing a component’s behavior via
modification of specific properties of the component, such as changing the internal
behavioral protocol of a component.

2.4.2. Repair Strategies
The second extension to the traditional notion of architectural style is the specification of
repair strategies that correspond to selected constraints of the style. The key idea is that
when a stylistic constraint violation is detected, the appropriate repair strategy will be
triggered.
Describing Repair Strategies

A repair strategy has two main functions: first to determine the cause of the problem, and
second to determine how to fix it. Thus the general form of a repair strategy is a sequence
of repair tactics. Each repair tactic is guarded by a pre-condition that determines whether
that tactic is applicable. The evaluation of a tactic’s pre-condition will usually involve the
examination of various properties of the architecture in order to pinpoint the problem and
determine applicability. If it is applicable, the tactic executes a repair script that is written
as an imperative program using the style-specific operators described above.

To handle the situation that several tactics may be applicable, the enclosing repair
strategy decides on the policy for executing repair tactics. It might apply the first tactic
that succeeds. Alternatively, it might sequence through all of the tactics, or use some
other style-specific policy.

The final complication associated with repair strategies is the use of transactions. The
body of a repair strategy is typically enclosed within a transactional scope so that if an
error occurs during the execution of a repair, the system can abort the repair, leaving the
architecture in a consistent state. Failure of a repair strategy can be caused by a number
of factors. For example, it may be the case that none of the tactics have applicable firing
conditions. Or, an applicable tactic may find that conditions of the actual system or its
environment do not permit it to carry out its repair script. Transaction aborts cause the
system to inform the user of a system error that cannot be handled by the automated
mechanisms.
Choosing Tactics

One of the principal advantages of allowing the system designer to pick an appropriate
style is the ability to exploit style-specific analyses to determine whether repair tactics are
sound. By sound, we mean that if executed, the changes will help reestablish the violated
constraint.

In general, an analytical method for an architecture will provide a compositional
method for calculating some system property in terms of the properties of its parts. For
example, a reliability analysis will depend on the reliability of the architectural parts,
while a performance analysis will depend on various performance attributes of the parts.

13

By looking at the constraint to be satisfied, the analysis can often point the repair strategy
writer both to the set of possible causes for constraint violation, and for each possible
cause, to an appropriate repair.

For instance, one type of analysis appropriate to the pipe-filter style is throughput
analysis. Such an analysis allows one to characterize a batch-processing pipe-filter
system by the ratio of the input quantity to the output quantity (say, in terms of records),
and compose the overall ratio from the ratio of each individual filter based on connection
topology. The administrator of this system might want to enforce a constraint on the
system in terms of this input-output ratio. Violation of this throughput ratio constraint
suggests congestion of processing within the system. The associated repair strategy can
then use a more fine-grained throughput analysis to pinpoint the segment or the particular
filter causing the congestion.

2.5. Propagation
The final component of our adaptation framework is a translator that interprets repair
scripts as operations on the actual system (Figure 1, item 6). As we noted earlier, we
assume that the executing system provides a set of system-changing operations via a
Runtime Manager. The nature of these operations will depend heavily on the implementation
platform. In general, a given architectural operation will be realized by some number of
lower level system reconfiguration operations. Each such operator can raise exceptions to
signal a failure. The Translator then propagates them to the model level, where transaction
boundaries can cause the repair strategy to abort.

Even though the system-changing operations are system specific, the mechanisms for
propagating system changes can be fairly general, subject to the constraints of the
implementation platform. These mechanisms can be as simple as socket communication,
or as complicated as mobile-code or an entire change propagation technology.

3. Tool support
In this section, we discuss the tool support that we developed as part of the DASADA
program. We developed support for each of the parts of our infrastructure, in addition to
development tools to aid in the development of particular gauges and repairs.

3.1. Gauge Infrastructure
To illustrate how the infrastructure is realized in practice consider Figure 4, which
presents a simple example of probing and gauging. Imagine that we have a target system
that consists of a sender that is sending files to a server. The architectural model of this
system, represented at the top of the figure, consists of two components (the sender and
the server) and one connector, L, representing the network link between them. The
implementation of this system consists of the programs comprising the sender and server
(these could be further elaborated, but that is of no interest in this example), the actual
network links between the machines on which the sender and server are executing, and
the set of files to be delivered. The user of this system requires that the set of files should
reach the server within a certain deadline. Whether this deadline is being met by the
running application depends on the size of the files to be transferred and the bandwidth
available between the sender and the receiver. Thus, to ascertain the behavior of the

14

system with respect to this performance attribute, we need to insert some probes and
gauges.

Two types of probes are inserted in the target system. One type of probe monitors the
environment, and reports the bandwidth of the various links between the machines of
interest; these probes are represented by P2, P3, and P4. The second type of probe, P1, is
inserted into the sender, and reports the size of the files being loaded into the system.
Such a probe might be realized through instrumenting the system call fopen, for example.
This probe information is not directly related to the performance attribute in the
architectural model, which is in terms of transfer time between the sender and the server.
To achieve this level of monitoring, a gauge is attached to the connector L in the
architectural model. This gauge uses the probe values and calculates the estimated
transfer time based on the file size and the available bandwidth. This value is then
reported as the transfer time of that particular connector, to be consumed by a monitoring
tool that will evaluate whether the deadline can be met.

The nature of probes, technologies for inserting them into systems, and how they
report values is not discussed in detail in this paper. However, their context with respect
to gauges is important in highlighting the difference between the low level, system
observations and the high level, architectural observations that gauges produce.

3.1.1. Gauge Definition
Gauges are software entities that gather, aggregate, compute, analyze, disseminate

and/or visualize measurement information about software systems. Software tools/agents,
software engineers, and system operators consume such information, use it to evaluate
system state and dynamically make adaptation decisions. In its pure form, a gauge does

sender server
L

G

sender
server

P2 P4P3

L1
L2 L3

Probe bus

Gauge
reporting bus

bandwidth

Architectural
Model

Target system
/ environment

File_Sender Gauge consumer

bandwidth bandwidth

P1

file size

transfer time

Figure 4. Gauge Example.

15

not change its associated model or control the software system directly. However, the
outputs of a gauge may be used by other entities to effect such changes.

Several principles or assumptions underlie this notion of gauges and have been used
to guide the design of the gauge specification and gauge APIs. These assumptions
include:

1. The value (or values) reported by a gauge can have multiple consumers. A single
gauge consumer can use multiple gauges. For example, there may be gauge
consumers that simply monitor and report values to the user, and other consumers
that automatically detect impending failure and take action to adapt the
underlying system automatically, but use the same model as the basis for both
activities. In this case, we do not want to duplicate gauges.

2. Different parties will develop different types of gauges. We expect there to be a
wide variety of gauge types, reflecting the diverse needs for system monitoring
and adaptation. We expect that in many cases a heterogeneous mix of gauges will
be operating in a distributed fashion on multiple (heterogeneous) platforms.

3. The set of gauge consumers can change dynamically. In this way we can
dynamically adapt our monitoring infrastructure to add new observational
capabilities as needed.

4. Each gauge has a type, which describes the gauge’s setup and configuration
requirements, and the types of values that it reports. Gauge developers and gauge
consumers should have a contract that specifies what to provide and require from
a gauge.

5. Gauges are associated with models. Models allow gauges to interpret their inputs
and produce higher-level outputs. Moreover, gauge values must be meaningful in
some context, and the model provides the context. For example, the transfer time
gauge of the example above interprets the physical observations in terms of an
abstract connector in the context of a specific architectural model.

We also identify the need for certain gauge administrative entities – called gauge
managers – that will be developed to facilitate the control, management, and meta-
information query of gauges.

Given the diversity of gauges, implemented by many different parties, using different
programming languages, running on different hardware and software platforms, it is
important to be able to characterize gauges so that a system builder can determine what
types of gauges are available and what kinds of capabilities that type of gauge has. Gauge
developers can also use such a characterization as a functional specification around which
to base their implementations, and by the gauge run-time infrastructure to manage gauges
by providing gauge meta-information. In this section we consider how one might specify
a gauge. In brief, a gauge’s specification describes (1) its associated model (and model
type), (2) the types of values that it reports and the associated model properties, and (3)
setup and configuration parameters.

Each gauge has a type. A gauge type specification describes the shared features of
instances of a gauge type. A gauge instance specification defines a particular gauge. A
gauge instance includes information about the gauge that elaborates the gauge type
specification and associates the outputs of the gauge with a particular abstract model or

16

elements of a model. For example an instance of the transfer time gauge type, defined in
Table 1, would identify the IP address set-up parameters, a default “frequency of
sampling” control parameter, and indicate the model and connector for which it is
calculating the transfer time value.

A gauge type specification is a tuple consisting of the following parts:
1. The name of the gauge type: for example, XferTime_Gauge_T;
2. The set of values reported by the gauge (specified using a name and a type): for

example, the XferTime_Gauge_T reports one value, xferTime of type float;
3. Setup parameters (including name, type, and default value for each parameter):

for example, the XferTime_Gauge_T has two setup parameters: Src_IP_Addr and
Dst_IP_Addr, which are both of type String and have no default value;

4. Configuration parameters (including name, type, and default value for each
parameter): for example, the XferTime_Gauge_T has one configuration parameter
Sampling_Frequency, which is of type milliseconds with a default value of 50.
The sets of configuration parameters and setup parameters are not necessarily
disjoint. A default value should be provided for each configuration parameter that
is not in the set of setup parameters.6

5. Comments: these explain in more detail what a gauge does and how to interpret
the values (the values’ units, accuracies, etc.) and provide more detail about the
functionality of the gauge.

To illustrate this definition, Table 1 describes a gauge type for the gauge G in Figure
4 that measures the transfer time value in milliseconds, represented as a floating point
number.

Table 1. An Example of Gauge Type Specification.
Gauge Type XferTime_Gauge_T

Reported Values xferTime: float

Setup Parameters Src_IP_Addr: String [default=””]

Dst_IP_Addr: String [default=””]

Configuration Parameters Sampling_Frequency: int
[default=50]

Comments Latency_Gauge_T measures network
latency of a connector whose
endpoints are defined by a source
and destination IP address.

How a given gauge type is instantiated is described in a gauge instance specification
as a tuple consisting of the following parts:

1. The name and type of the gauge instance: for example, G is the name of the
latency gauge in Figure 4, which is of gauge type XferTime_Gauge_T;

6 Currently only literal values are allowed for setup and configuration parameters.

17

2. The name and type of the model that the gauge is associated with: for example, G
is associated with a model called File_Sender, which is of type Acme;

3. Mappings from values reported by the gauge to the associated model properties.
Each mapping is a tuple of <GaugeValue, ModelProperty>, meaning that the
GaugeValue actually reflects the value of ModelProperty: for example, the
mapping for G is <xferTime, L.xferTime>;

4. Setup values: these can be statically specified or dynamically provided upon
gauge creation. If no value is provided, the default value of this gauge type should
be used;

5. Configuration values: these can be statically specified or provided at run-time. If
no value is provided when the gauge is created, the default value for this gauge
type should be used.

6. Comments: to describe more details of the gauge’s function.
Table 2 specifies the gauge instance G that we discussed in the previous example.

Table 2. An Example of Gauge Instance Specification.
Gauge Name: Gauge Type G: XferTime_Gauge_T

Model Name: Model Type File_Sender : Acme

Mapping <xferTime, L.xferTime>

Setup Values Src_IP_Addr = L.src.IP1;

Dst_IP_Addr = L.snk.IP2;

Configuration Values Sample_Frequency = 100

Comments G is associated with the L
Connector of the system,
File_Sender, defined as an Acme
model.

The above definition of gauges is very general, can be applied to a wide variety of
monitoring needs, models, or modeling languages.

3.1.2. Implementation
To this point we have described generally the way that gauges are specified, and how

they are used to monitor a system. Given this general infrastructure, we have
experimented with a set of tools and techniques that allow monitoring in the context of
Acme models. This section describes the state of our implementation.
Attaching Gauges to Acme Descriptions

As indicated earlier, gauges are used to interpret observations of the running system
in the context of an architectural model. These observations form part of the semantics of
the system and therefore should be mapped to the semantics of the architecture. Acme is
a general-purpose architecture description language that is style-independent. Although
particular styles can be defined in the Acme language, the building blocks of an

18

architecture are generic components and connectors, with associated properties that do
not have any inherent meaning. Styles are defined by specifying particular properties to
be associated with particular types of components, and also in defining constraints that
can be used to do some semantic analysis of the style. Furthermore, analysis tools can
analyze certain properties in an architecture to arrive at some conclusion about the
correctness of the architecture according to the analysis.

Because the semantics of an architecture are captured in the property mechanism of
Acme, gauges are attached to Acme properties. The meaning of this is that the value(s)
reported by a gauge are actually values of the properties to which they are attached. In
this way, architecture-based analysis tools can observe these changing properties. For
example, design constraints over the properties in an architecture can be re-evaluated
when a property value changes dynamically as reported by a gauge. This allows other
tools that analyze Acme properties to be used dynamically. Attaching gauges to
properties also means that tools that currently work with Acme descriptions need not
change when gauges are added.

To attach a gauge to an Acme property, it is first necessary to define the gauge as a
property of the system. The property Ggauge in the file_sender system in Figure 5
defines a gauge and gives it a name, a type, and defines the setup and configuration
parameters. The type of this property (XferTime_Gauge_spec) is defined in the family of
which the system is an instance. Tools can determine that this is a gauge by looking at the
meta-property isGauge: if it is defined, then that property is intended to be a gauge.7
Figure 5 also shows an Acme description of a connector L. The fact that a property is a
gauged value (and therefore its value is assigned at runtime) is set by having the meta-
property gauged associated with the property. The next meta-property (gauge) defines the
name and type of the gauge, which gauge value is mapped to this particular property, and
the setup and configuration parameters. The Acme gauge specification in Figure 5
corresponds to the gauge instance specification in Table 2. The gauge meta-property is an
Acme record that is defined elsewhere in the Acme description. Each gauge type has a
corresponding Acme record type. These records can be generated automatically from the
gauge type specification.

7 Meta-properties are currently used in Acme to assign details like default values or units of measure and
enclosed by << >>.

System file_sender : GaugedClientServerFam = {
 property Ggauge : XferTime_Gauge_spec = [
 name = “G”;
 gaugeType = XferTime_Gauge_T;
 setup = [Src_IP_Addr = “barossa.cs.cmu.edu”;
 Dst_IP_Addr = “hunter.cs.cmu.edu”
];
 configuration = [Sampling_Frequency = 100.0];
] <<isGauge : boolean = true;>>;

 …

 connector L = {
 role src;
 role snk;
 property xferTime : float
 << gauged : boolean = true;
 gauge = [
 name = “G”;
 value = xferTime
];
 >>;
 };
};

Figure 5. Attaching Gauges to Systems in Acme.

19

Tool Support for Gauges

Based on the definition of gauges given above, we have developed an implementation
of the gauge infrastructure that provides a set of Java classes and interfaces, and uses the
Siena wide-area event notification system [3] as the communication substrate through
which events are communicated between gauges and their consumers. The class
hierarchy for this implementation is presented in Figure 6. The classes provided by the
infrastructure are shown in the middle of the figure; the interfaces that need to be
implemented for particular gauges or gauge consumers are at the top of the figure. This
implementation hides the communication mechanism used to send the events. In fact, we
have one implementation that uses Siena, and another that transparently utilizes Java
Remote Method Invocation (RMI) to transport events – in either case, the code that the
Gauge Developer or Gauge Consumer Developer has to write is exactly the same,
allowing portability across communication mechanisms.

An Acme description with a set of attached gauges can be used to generate the gauge
instances so that consumers can listen to those messages. We have written a tool that does
this, and also generates the necessary code to connect with our design environment,
AcmeStudio, which can be used to display the gauge outputs dynamically.8 Figure 7
shows the process by which this is achieved. The Gauge Generator takes the Acme file
and produces a Monitoring Tool. This tool, when executed, will create and configure the
gauge instances (by connecting with the appropriate gauge managers), and uses the

8 This tool is currently being implemented and will be ready by the time camera-ready copies of the paper
are due.

Figure 6. Gauge Infrastructure Implementation.

20

Common Object Model (COM) interface of AcmeStudio to load the Acme description,
start listening for gauge values, and propagate these values to AcmeStudio.

3.1.3. Gauge Workbench
The gauge specifier is a Java application for specifying gauge types. Gauge types define
the values reported by instances of these gauges, the parameters required to create a
gauge (called the setup parameters), and the parameters that may be used to configure
instances as they run. The gauge specifier provides a GUI front end to this specification.
The output of the specifier is:

• Acme Families: that define the gauge type for use within AcmeStudio. This
allows gauge instances to be attached to Acme designs and created from within
AcmeStudio.

• Gauge Implementation Stubs: Generate Java stubs for gauges and gauge
managers that integrate with the CMU Gauge Infrastructure. The aim is that the
gauge developer has to write the minimal amount of code to have a gauge
implemented.

3.2. Gauges
Gauges interpret system-specific information in the context of an architectural model.
During the period of this grant, we investigated three different types of gauges.

3.2.1. Network Performance Gauges
Network Performance Gauges measure characteristics of the network and report these as
properties in an architectural model. We have developed probes for gathering information
about networks, based on the Remos system [10]. Remos has two parts: 1) an API, which
allows applications to issue queries about bandwidth and latency between groups of
hosts, implemented as a library that is linked with applications; and 2) a set of servers,
called collectors, that collect information about different parts of the network. A probe
uses Remos to collect the information required for the probe (such as bandwidth and
latency) and distributes it as events using the DASADA Probe Infrastructure Protocol.

Gauge
Generator

Acme
File

Monitoring
Tool

Figure 7. Generating Gauges from Acme Descriptions.

21

Our performance gauges listen to this information and perform calculations and
transformations to relate it to the architectural model of a system.

3.2.2. Protocol Gauges
In addition to providing information about the network performance, we have developed
gauges that monitor the specified behavior of a system. These gauges take protocols
specified in Finite State Processes (FSP) [11] and then monitor method calls in the
system to see if the protocol is being followed in the running system. Protocols are
specified as properties in an architectural model; a tool extracts these protocols and feeds
them into gauges that interpret the protocol. The protocol gauges listen to probes that
report method invocations in the running system and relate them to events in the protocol.
The gauges then report the success or failure of the protocol to the architectural model.

3.2.3. Architecture Gauges
The Rainbow implementation currently assumes that the architectural model is consistent
with the system. This is not necessarily the case – and, in fact, the architectural model of
a system may not even be reliably known. In order to address this, we have developed
technology, called DiscoTect, to monitor a running system and extract its architecture.
The technology essentially uses state machines to monitor events in the running system
and emit architectural events to create an architectural model. Details of this work can be
found in [24].

3.3. Repair
In addition to providing tools to specify gauges and implement monitoring of a system,
we have developed some infrastructure to handle and specify repairs. The Tailor repair
engine is infrastructure that can be called when a constraint fails, and interprets repair
strategies to determine the repairs that should take place. Currently, Tailor uses a simple
scheme for interpreting repairs in a linear fashion; future research will look at making
Tailor more intelligent to include learning which repairs have a history of working, for
example.

In order to specify repairs, we have designed a language (examples of which appear
in Section 4.1), that allows a designer to write the architectural repairs. Currently, we
hand-translate these repairs into Java code that we can plug into the infrastructure.

3.4. Integration with Acme Tools
So far, we have discussed the tools that have been used for architectural design, and
given details of some design-time Acme tools that are used to construct and analyze
architectures. If we are using software architectural models and analyses to guide
dynamic adaptation, then it is useful to use these tools at runtime. This approach
preserves continuity between design time and runtime views of the system, and maintains
uniformity of the types of analyses that are performed at runtime and their meaning with
respect to the design-time architectural artifacts.

Given that we want to use existing architectural tools at runtime, the question arises
as to what role they should play in runtime adaptation, how they should be adapted to be

22

used in the dynamic context, and what additional tools are required. The guiding
principle should be to maintain the separation of concerns that exist in the framework
outlined earlier, thus separating the different kinds of expertise required into different
appropriate tools, rather than attempting to develop a monolithic tool to perform all
aspects of adaptation.

While we discuss this with respect to some Acme-based architecture tools, we believe
that analogous modifications will need to be made to any architecture tool to fit into the
general adaptation framework of Figure 1.

Within the framework, the different separations of concern are:

• the use of different architectural views and analyses, that may in fact exist in
several design-time tools;

• the ability to monitor different attributes of the architecture at different times
in execution;

• the desire to experiment with different types of repair strategies in the
framework; and

• the fact that there may be many mappings from a particular architectural
model expressed in a particular architectural style to an implementation of that
system.

Thus, in the design of our toolset we have modified our existing design-time tools to
observe and analyze the architecture, and developed new tools to capture the knowledge
particular to each concern.
3.4.1. Changes to Existing Tools
The changes to our existing toolset fall broadly into the following categories:

• Interfaces that allow the architectural model to be changed dynamically.

• Integration points between architectural analysis tools and facilities to effect a
repair should analysis determine something is wrong.

• Facilities to allow a designer to indicate points in the architecture that should
be monitored, and the types of monitoring that should be conducted.

• Addressing the scalability issues with conducting analysis at runtime, in
reaction to observations of the executing system.

We show how we addressed these categories in the case of AcmeStudio and Armani.

AcmeStudio: The role of AcmeStudio in the dynamic adaptation framework is
twofold. First, it is still used at design time to define the architecture. For this stage,
AcmeStudio has been extended to allow gauges to be attached to points in the
architecture. Once again, this is based on families – families define which gauge types are
available to a system. If a family defines such gauge types, instances can be dropped onto
the design and attached to properties in the architecture. An external tool is called by
AcmeStudio to start the gauges and begin reporting values.

23

The second role of AcmeStudio is as an observation tool in the adaptation framework.
Once the system is started, AcmeStudio is no longer used to edit the architecture – in fact,
it observes the changes made to the architecture by other tools. To facilitate this role,
AcmeStudio has been extended with a COM interface through which gauges can report
changing property values. The COM interface also contains routines to change the
architectural model – create, delete, or modify components, connectors, etc. In this way,
tools that do the actual analysis and modification can inform AcmeStudio, so that the
changed architecture can be viewed. For example, if a gauge detects an overloaded
server, it can report this fact as the sOverloaded property of the corresponding architectural
component. AcmeStudio, using existing visual variants, can change the component to
light gray.

Armani Constraint Analysis: Armani has been extended with an imperative language
that can be used to define repair strategies to programmatically change the architecture. A
repair strategy is associated with an Armani constraint, and is invoked when the
constraint fails. A repair strategy is composed of a number of subsidiary constraints and
repair tactics. This allows a repair strategy to conduct more than one change, based on
further investigation of the problem. For example, if an Armani constraint specifying that
latency must be below a certain threshold is violated, the repair strategy will likely
contain tactics to address the case if the bandwidth has fallen or the load on servers has
risen. Furthermore, repair strategies contain decision logic for choosing which of the
tactics to apply.

A repair strategy for this scenario is presented in Figure 12. The particular Armani
constraint, and the particular repair strategy to invoke, are shown in lines 1-3 of the
figure. In line 2, “! ” is a new operator that specifies that the repair strategy following is
to be executed only if the constraint is violated. The top-level repair strategy in lines 5-
17, fixLatency, consists of two tactics, only one of which is chosen to be executed by this
repair strategy. The first tactic in lines 19-31 handles the situation in which a server group
is overloaded, identified by the precondition in lines 24-26. Its main action in lines 27-29
is to create a new server in any of the overloaded server groups. The second tactic in lines
33-48 handles the situation in which high latency is due to communication delay,
identified by the precondition in lines 34-36. It queries the architecture to find a server
group that will yield a higher bandwidth connection in lines 40-41. In lines 42-44, if such
a group exists it moves the client-server connector to use the new group.

In addition to extending the Armani language, we are investigating ways to optimize
the performance of the constraint analysis at runtime with incremental approaches.
3.4.2. New Architecture Tools
The existing tools address the concerns of observation and analysis in our framework.
However, they do not address how to implement monitoring, how to execute the repair,
or how to map between an architecture and its implementation.

Gauge Infrastructure: Gauges are used to propagate information about the runtime
system to the architectural model. We have developed a gauge infrastructure that
provides a Java class library to provide implementation stubs for gauges, and to facilitate
communication between gauges and tools that consume gauge outputs. Because of the
requirement for working in distributed systems, we have implemented the transport layer

24

of the gauge infrastructure using both the Siena wide area event notification system from
the University of Colorado [3].

Tailor Repair: In concert with the repair extension to Armani, we are developing tools
that provide runtime execution of these repairs. The goal of Tailor is to execute repairs
that return an erroneous architecture to one that conforms to its style and constraints.
Tailor listens to gauges for values associated with the model it is trying to maintain. It
then invokes Armani to check if any constraints are violated. If they are, it executes the
appropriate repair tactics. Tailor is decoupled from the executing system, and indeed can
run on a machine independent of the running system. In this way, we anticipate that
monitoring and repair at the architectural level will not unduly impede the running
system.

Mapping Between Architecture and Implementation: Currently in our toolset we
assume that gauges provide a mapping between runtime observations and architectural
observations. In fact, this is just one example of mapping that is required throughout the
framework. For our approach to be effective, we require a two-way mapping between
information in the runtime and information in the architecture. Both directions are
required by Tailor. A mapping from the implementation to the architecture is required
when Tailor investigates the state of the running system to determine the best tactic (for
example Tailor may need to determine which server group to move a client to). The
mapping from the architecture to the runtime system is required when Tailor issues
architectural changes that need to be reflected in the implementation. For example, Tailor
may issue the architectural repair to add a Server component, which needs to be
translated to starting a server process on a particular host and joining a particular server
group. We are not assuming that the architecture to implementation mapping is one-to-
one. Indeed, a particular architectural style, for example a client server architecture, could
be associated with many “implementation styles.” Currently, this information is captured
in the Translator component of our framework and we are investigating methods of
generalizing this component so that we can specify the transformations for multiple
styles. Once this component is in place, it could also be used by gauges to associate
runtime observations with architectural properties, in contrast to our current
implementation, which embeds this information in the gauges themselves.

3.4.3. Integrating Architectural Tools
The development of different tools to capture specific knowledge about different aspects
of dynamic adaptation means that these tools need to be integrated in some fashion. The
framework in Figure 1 gives a broad outline of how to do this.

Figure 7 provides an illustrative example of how we have integrated our tools, in
particular when applied to adapting a client-server system. The running distributed client-
server system is on the left of the figure, and consists of three clients, three servers, and a
request queue component. Clients make requests to the request queue and servers serve
requests that they pull from the request queue. To instrument this system, each
component is run inside an AIDE shell [9], which allows us to probe the method calls
inside the component. This implementation corresponds to the example reported in
Section 4, which calls for adaptation if the latency rises above 2 seconds. Using our tools

25

to commence the adaptation requires several steps. It is assumed that the system is
running, and that the architecture for this system is already defined.

1. AcmeStudio is used to attach gauges to various properties of the architecture. In our
example, we attach gauges to the server load property of the request queue
component of the architecture, and two gauges to each of the client roles in the
architecture – one to report the bandwidth and one to report the average latency
experienced by clients attached to the role.

2. To start the gauges, AcmeStudio invokes the Gauge Extractor tool, which
communicates via RMI with a Gauge Agent. The Gauge Agent is the mediator
between gauges and AcmeStudio.

3. The Gauge Agent locates Gauge Managers to start particular gauges and then creates
the required gauges (in the middle of the figure).

4. These gauges create the necessary implementation probes. The probes in this example
report every time the newRequest method is called in a client, and also the size of the
response corresponding to the request. A probe in the Request Queue reports the size of
the queue.

5. The gauges interpret this low-level, method-call information into high level latency
and bandwidth values and report these values to the gauge bus.

6. The Gauge Agent reports gauge values to AcmeStudio, which can display the results.

Client1 Client2 Client3

Request Queue

Server1 Server3 Server2

AIDE Shell

AIDE Shell

AIDE Shell

AIDE Shell

AIDE Shell

Gauge
Manager

G
au

ge
 A

ge
nt

Gauge Extractor

Tailor
Runtime Manager

Figure 8. Integration of Architecture Tools.

AIDE Shell

26

7. Concurrently, Tailor listens to the gauge bus and evaluates Armani constraints to
determine if the system is still performing acceptably. If not, it makes changes to its
internal model of the architecture and reports these changes to AcmeStudio, via the
COM interface, and the Runtime Manager, via RMI.

8. The Runtime Manager in this example contains a simple table-based mapping
between architectural changes and runtime changes, and performs the necessary
changes in the runtime based on the repair tactic chosen by Tailor.

4. Case Studies

4.1. Performance-based Adaptation of a Web-based Client-Server
System
In this section we give a detailed end-to-end description of how each of the elements in
our adaptation framework come together to achieve runtime adaptation. We use the
example described in Section 2 to illustrate our technique. The example is simple load
balancing of a web-based client-server system. This example is used simply to illustrate
how our technique works; we are not proposing that this technique be applied to load-
balancing of such systems – a technique that is already embedded in many systems.

4.1.1. Defining a Client-Server Architectural Style
Figure 9 contains a partial description of the style used to characterize the class of web-
based systems of our example. The style is actually defined in two steps. The first step
specifies a generic client-server style (called a family in Acme). It defines a set of
component types: a web client type (ClientT), a server group type (ServerGroupT), and a server
type (ServerT). It also defines a connector type (LinkT). Constraints on the style (appearing in
the definition of LinkT) guarantee that the link has only one role for the server. Other
constraints, not shown, further define structural rules (for example, that each client must
be connected to a server).

Family ClientServerFam = {
 Component Type ClientT = {…};
 Component Type ServerT = {…};

 Component Type ServerGroupT = {…};

 Role Type ClientRoleT = {…};
 Role Type ServerRoleT = {…};

 Connector Type LinkT = {
 invariant size(select r : role in Self.Roles |
 declaresType(r, ServerRoleT)) == 1;
 invariant size(select r : role in Self.Roles |
 declaresType(r, ClientRoleT)) >= 1;
 Role ClientRole1 : ClientRoleT;
 Role ServerRole : ServerRoleT;
 };
};
 Figure 9. Client/Server Style Definition.

27

There are potentially many possible kinds of analysis that one might carry out on
client-server systems built in this style. Since we are particularly concerned with overall
system performance, we augment the client-server style to include performance-oriented
properties. These include the response time and degree of replication for servers and the
delay time over links. This style extension is shown in Figure 10. Constraints on this style
capture the desired performance related behavior of the system. The first constraint,
associated with PAServerGroupT, specifies that a server group should not be under-utilized.
The second constraint, as part of the PAClientRoleT, specifies that the latency on this role
should not be above some specified maximum.

Having defined an appropriate style, we can now define a particular system
configuration in that style, such as the one illustrated in Figure 11.

4.1.2. Using M/M/m Performance Analysis to Set Initial Conditions
The use of buffered request queues, together with replicated servers, suggests using
queuing theory to understand the performance characteristics of systems built in the
client-server style above. As we have shown elsewhere, for certain architectural styles
queuing theory is useful for determining various architectural properties including system

Family PerformanceClientServerFam extends ClientServerFam with {
 Component Type PAClientT extends ClientT with {
 Properties {
 Requests : sequence <any>;
 ResponseTime : float;
 ServiceTime : float;
 };
 };
 Connector Type PALinkT extends LinkT with {
 Properties {
 DelayTime : float;
 };
 };
 Component Type PAServerGroupT extends ServerGroupT with {
 Properties {
 Replication : int <<default : int = 1;>>;
 Requests : sequence <any>;
 ResponseTime : float;
 ServiceTime : float;
 AvgLoad : float;
 };
 Invariant AvgLoad > minLoad;
 };
 Role Type PAClientRoleT extends ClientRoleT with {
 Property averageLatency : float;
 Invariant averageLatency < maxLatency;
 };

 Property maxLatency : float;
 Property minLoad : float;
};

Figure 10. Client/Server Style Extended for
Analysis.

28

response time, server response time (Ts), average length of request queues (Qs), expected
degree of server utilization (us), and location of bottlenecks.

In the case of our example style, we have an ideal candidate for M/M/m analysis.
The M/M indicates that the probability of a request arriving at component s, and the
probability of component s finishing a request it is currently servicing, are assumed to be
exponential distributions (also called “memoryless,” independent of past events); requests
are further assumed to be, at any point in time, either waiting in one component’s queue,
receiving service from one component, or traveling on one connector. The m indicates
the replication of component s; that is, component s is not limited to representing a single
server, but rather can represent a server group of m servers that are fed from a single
queue. Given estimates for clients’ request generation rates and servers’ service times
(the time that it takes to service one request), we can derive performance estimates for
components according to Table 3. To calculate the expected system response time for a
request, we must also estimate the average delay Dc imposed by each connector c, and
calculate, for each component s and connector c, the average number of times (Vs, Vc) it
is visited by that request. (Given Vs and the rates at which client components generate
requests, we can derive rather than estimate Rs, the rate at which requests arrive at server
group s.)

Applying this M/M/m theory to our style tells us that with respect to the average
latency for servicing client requests, the key design parameters in our style are (a) the
replication factor m of servers within a server group, (b) the communication delay D
between clients and servers, (c) the arrival rate R of client requests and (d) the service
time S of servers within a server group.

In previous work [18] we showed how to use this analysis to provide an initial
configuration of the system based on estimates of these four parameters. In particular,
Equation (5) in Table 1 indicates for each server group a design tradeoff between
utilization (underutilized servers may waste resources, but provide faster service) and
response time. Utilization is in turn affected by service time and replication. Thus, given
a range of acceptable utilization and response time, if we choose service time then

Component ServerGrp1
(ServerGrpRep)

Server1 Server2 Server3

Client1 Client2 Client3 Client4 Client5 Client6

ServerGrp3

Component ServerGrp1
(ServerGrpRep)

Server1 Server2 Server3

Figure 11. Architectural Model of Example
System.

ServerGrp2ServerGrp3

29

replication is constrained to some range (or vice versa). As we will show in the next
section, we can also use this observation to determine sound run time adaptation policies.

We can use the performance analysis to decide the following questions about our
architecture, assuming that the requirements for the initial system configuration are that
for six clients each client must receive a latency not exceeding 2 seconds for each request
and a server group must have a utilization of between 70% and 80%:

• How many replicated servers must exist in a server group so that the server
group is properly utilized?

• Where should the server group be placed so that the bandwidth (modeled as
the delay in a connector) leads to latency not exceeding 2 seconds?

Given a particular service time and arrival rate, performance analysis of this model
gives a range of possible values for server utilization, replication, latencies, and system
response time. We can use Equation (5) to give us an initial replication count and
Equation (6) to give us a lower bound on the bandwidth. If we assume that the arrival rate
is 180 requests/sec, the server response time is between 10ms and 20ms the average
request size is 0.5KB, and the average response size is 20KB, then the performance
analysis gives us the following bounds:

Initial server replication count= 3-5
Zero-delay System Response Time = 0.013-0.026 seconds

Therefore,
0 < Round-trip connector delay < 1.972 seconds, or
0 < Average connector delay < .986 seconds

(1) Utilization
of server group s m

SR
u ss

s =

(2) Probability
{no servers busy} () ()

()

1

00 1!!

−

= ⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡

−
+= ∑

s

m
ssm

i

i
s

um
muu

i
mup

(3) Probability
{all servers busy}

()
()s

m
s

Q um
mup

P
−

=
1!

0

(4) Average queue length of s

s

sQ
s u

uP
Q

−
=

1

(5) Average response time of s
()

()

() () ()() 1

0

2 1
!

1!

1

+

=

−+−

+

=
−

+=

∑ m
ss

m

n

n
s

s

m
ss

s

ss

sQ
ss

muu
n

mu
umm

muS
S

uR
uP

ST

(6) System response time
(latency) ∑∑ + ccss VDVT

Table 3. Performance Equations from [4].

30

Thus, the average bandwidth over the connector must be greater than 10.4KB/sec.
This analysis provides several key criteria for monitoring the running system. First, if
latency increases undesirably, then we should check to ensure that the bandwidth
assumption still holds between a client and its server. Second, if bandwidth is not the
causing factor, then we should examine the load on the server.

4.1.3. Defining Adaptation Operators
The client-server architectural style suggests a set of style-specific adaptation operators
that change the architecture while ensuring the style constraints. These operators are:

• addServer(): This operation is applied to a component of type ServerGroupT and
adds a new component of type ServerT to its representation, ensuring that there
is a binding between its port and the ServerGroup’s port.

• move(to:ServerGroupT): This operation is applied to a client and first deletes
the role currently connecting the client to the connector that connects it to a
server group. It then performs the necessary attachment to a LinkT connector
that will connect it to the server group passed in as a parameter. If no such
connector exists, it will create one and connect it to the server group.

• remove(): This operation is applied to a server and deletes the server from its
containing server group. Furthermore, it changes the replication count on the
server group and deletes the binding.

The above operations all effect changes to the model. The next operation queries the
state of the running system:

• findGoodSGroup(cl:ClientT,bw:float):ServerGroupT; finds the server group
with the best bandwidth (above bw) to the client cli, and returns a reference to
the server group.

These operators reflect the considerations just outlined. First, from the nature of a
server group, we get the operations of adding or removing a server from a group. Also,
from the nature of the asynchronous request connectors, we get the operations of adapting
the communication path between particular clients and server groups. Second, based on
the knowledge of supported system change operations, outlined in Section 4.4, we have
some confidence that the architectural operations are actually achievable in the executing
system.

4.1.4. Defining Repair Strategies to Maintain Performance
Recall that the queuing theory analysis points to several possible causes for why latency
could increase. Given these possibilities, we can show how the repair strategy developed
from this theoretical analysis. The equations for calculating latency for a service request
(Table 3) indicate that there are four contributing factors: (1) the connector delay, (2) the
server replication count, (3) the average client request rate, and (4) the average server
service time. Of these we have control over the first two. When the latency is high, we
can decrease the connector delay (by moving clients to servers that are closer) or increase
the server replication count to decrease the latency. Determining which tactic depends on
whether the connector has a low bandwidth (inversely proportional to connector delay) or

31

if the server group is heavily loaded (inversely proportional to replication). These two
system properties form the preconditions to the tactics; we have thus developed a repair
strategy with two tactics.
Applying the Approach

We specify repair strategies using a repair language that supports basic flow control,
Armani constraints, and simple transaction semantics. Each constraint in an architectural

01 invariant r.averageLatency <= maxLatency
02 !
03 fixLatency(r);
04
05 strategy fixLatency (badRole: ClientRoleT) = {
06 begin repair-transaction;
07 let badClient: ClienT =
08 select one cli: ClientT in self.Components |
09 exists p: RequestT in cli.Ports | attached(badRole, p);
10 if (fixServerLoad(badClient)) {
11 commit repair-transaction;
12 else if (fixBandwidth(badClient, badRole) {
13 commit repair-transaction;
14 } else {
15 abort(ModelError);
16 }
17 }
18
19 tactic fixServerLoad (client: ClientT) : boolean = {
20 let overloadedServerGroups: Set{ServerGroupT} =
21 { select sgrp: ServerGroupT in self.Components |
22 connected(sgrp, client) and
23 sgrp.AvgLoad > maxServerLoad };
24 if (size(overloadedServerGroups) == 0) {
25 return false;
26 }
27 foreach sGrp in overloadedServerGroups {
28 sGrp.addServer();
29 }
30 return (size(overloadedServerGroups) > 0);
31 }
32
33 tactic fixBandwidth (client: ClientT, role: ClientRoleT) : boolean = {
34 if (role.Bandwidth >= minBandwidth) {
35 return false;
36 }
37 let oldSGrp: ServerGroupT =
38 select one sGrp: ServerGroupT in self.Components |
39 connected(client, sGrp);
40 let goodSGrp: ServerGroupT =
41 findGoodSGrp(client, minBandwidth);
42 if (goodSGrp != nil) {
43 client.moveClient(oldSGrp, goodSGrp);
44 return true;
45 } else {
46 abort(NoServerGroupFound);
47 }
48 }

Figure 12. Repair Tactic for High Latency.

32

model can be associated with a repair strategy, which in turn employs one or more repair
tactics.

 Figure 12 (lines 1-3) illustrates the repair strategy associated with the latency
threshold constraint. In line 2, “! ” denotes “if constraint violated, then execute.” The
top-level repair strategy in lines 5-17, fixLatency, consists of two tactics. The first tactic in
lines 19-31 handles the situation in which a server group is overloaded, identified by the
precondition in lines 24-26. Its main action in lines 27-29 is to create a new server in any
of the overloaded server groups. The second tactic in lines 33-48 handles the situation in
which high latency is due to communication delay, identified by the precondition in lines
34-36. It queries the running system to find a server group that will yield a higher
bandwidth connection in lines 40-41. In lines 42-44, if such a group exists it moves the
client-server connector to use the new group. The result of an instance of this repair on
Figure 6 is depicted in Figure 8. The repair strategy uses a policy in which it executes
these two tactics sequentially: if the first tactic succeeds it commits the repair strategy;
otherwise it executes the second. The strategy will abort if neither tactic succeeds, or if
the second tactic finds that it cannot proceed since there are no suitable server groups to
move the connection to.

4.1.5. Style-Based Monitoring
In our example above we are concerned with the average latency of client requests. To
monitor this property, we must associate a gauge with the averageLatency property of each
client role (see the definition of PAClientRoleT in Figure 10). This latency gauge in turn
deploys a probe into the implementation that monitors the timing of reply-request pairs.
When it receives such monitored values it averages them over some window, updating
the latency property in the architecture model when it changes. The latency gauge that we
use is not specific to this style, or indeed to this implementation. The gauges utilizes
probes that use the Remos network monitoring service, which in turn uses the SNMP to
ascertain properties of the network.

But average latency is not the only architectural property that we need to monitor.
The repair tactics, derived from queuing theoretic model of performance analysis, rely on
information about two additional constraints: whether the bandwidth between the client
and the server is low or whether the server group is overloaded (or both). Thus, to
determine why latency is high in the architecture, we need to monitor these two
properties. The gauge for measuring bandwidth uses the same probe used by the latency
gauge for measuring the time it takes to receive a reply. An additional probe measures the
size of the reply and calculates the bandwidth based on these values. Determining the
load on the server can be done in a number of ways. We measure the size of a request
queue to indicate whether the server group is overloaded.

33

4.1.6. Mapping Architectural Operators to Implementation Operators
To illustrate, the specific operators and queries supported by the Runtime Manager in our
example are listed in Table 4. These operators include low-level routines for creating new
request queues, activating and deactivating servers, and moving client communications to
a new queue.

The Translator for our example maps the Style API Interpreter operations described in Section
4.1.3 to the Runtime Manager operations using the scheme summarized in Table 4.
(Parameters passed between the levels also need to be translated. We do not discuss this
here.) The actual map involves mapping model-level parameters to implementation level
parameters, and mapping return values to model values.

4.1.7. Putting the Pieces Together
As an example of how the adaptation framework fits together in our implementation, we
will consider one cycle of the repair, starting with a latency probe reporting a value, and
ending with a client moving to a new server group. This cycle indicates how the
architecture in Figure 11 is transformed into the architecture in Figure 13.

1. The bandwidth probe on the link between Client4 and ServerGroup1 reports a
bandwidth of 18KB/sec to the probe bus.

2. The latency gauge attached to Client4’s role combines this value with the average
size of requests that it has seen, and calculates an average latency of 2.5secs,
which it reports to the gauge bus. Similarly, the bandwidth gauge attached to
Client4’s role reports a bandwidth of 18KB/sec to the gauge bus.

3. The Architecture Manager, implemented as a gauge consumer, receives these
values and adjusts the averageLatency and bandwidth properties of Client4’s role.

4. The Analyzer, implemented using our Armani constraint analyzer, reevaluates
constraints. The constraint averageLatency < maxLatency in Client4’s role fails.

5. Tailor, the repair handler, is invoked and pauses monitoring before starting to

Table 4. Mapping Between Architecture and Implementation Operations.
Model Level Environment Level

addServer
findServer

activateServer
connectServer

moveClient createReqQue
moveClient

findGoodSGrp
Conditionals +

multiple calls to
remos_get_flow

34

execute the repair strategy in Figure 12, passing Client4’s role as a parameter.

6. The repair strategy first attempts to fix the server load, but returns false
because no servers are overloaded.

7. The repair strategy attempts to fix the bandwidth. It examines the bandwidth
property of the role, and determines that it is larger than 10.4KB/sec (line 34).
It then calls the architectural operator findGoodSGrp to find the server group with
the best bandwidth. This invokes queries to remos_get_flow.

8. The operator findGoodSGrp returns ServerGroup2 now has the best bandwidth and
initiates the moveClient operator (line 43). This in turn invokes the change
interface for the application to effect the move.

4.1.8. Results
We conducted an experiment to test the effectiveness of our adaptation framework on a
system that has no built-in adaptation, and to elucidate the portions of our framework that
needed more investigation.

The implementation that we used for our experiment was based on the example
presented in this paper – that of a client-server system using replicated server groups
communicating over a distributed system. We used this example because the architectural
style of the system is amenable to automatic performance analysis [18], the results of
which we can use to guide the development of our repairs.

This system is implemented in Java and has a set of change operations corresponding
to the operations in Table 4, that are called via RMI to change the system. The clients
send requests to an entity that splits the requests into queues, corresponding to the client’s
server group. Servers in a group pull information from the appropriate queue, and send a
reply. The size of the reply is indicated by the client request.

The requirements and assumptions that fed into our analysis are:

Client

Component ServerGrp1
(ServerGrpRep)

Server1 Server2 Server3

Component ServerGrp2
(ServerGrpRep)

Server1 Server2

Client1 Client2 Client3 Client4Client5 Client6

ServerGrp3

Component ServerGrp1
(ServerGrpRep)

Server1 Server2 Server3

Component ServerGrp2
(ServerGrpRep)

Server1 Server2

Figure 13. Model of System After Low Bandwidth Repair.

ServerGrp1 ServerGrp2

35

• We desire the maximum average latency experienced by clients to be less than
2 seconds

• The size of client requests is small (0.5K on average) compared to server
responses (20K on average).

• The average arrival rate of requests is approximately six per second.

Given these inputs, we calculated that an initial starting point of 3 replicated servers
in one server group would be sufficient to serve our six clients, and that the bandwidth
between the clients and servers should not be less than 10Kbps. Our experiment
measured the effectiveness of our approach as compared to not using our approach.
 Experimental Design

The experiment was conducted in a distributed setting inside a dedicated experimental
testbed consisting of five routers and eleven machines (depicted in Figure 14), in which
we deployed the client-server system. Because we had access to fewer machines than
processes, Clients 1 and 2 (C1 and C2 in the figure) share a machine, and the request
queue shares a machine with Server 5 (S5). In the initial state, Servers 4 and 7 were spare
servers that we could activate as repairs warranted. The routers are connected via 10Mbps
links; each application node is connected to a router by a connection that is at least
10Mbps. The repair infrastructure was restricted to the machine running Server 4 (the
thick ellipse in Figure 14), except for those parts of the infrastructure associated with
monitoring and communication of observations, which were distributed throughout the
environment.

C1,C2

S4

S1

S2

S3

C4 C3

S6

S5,RQ

S7

C5,C6

10Mbps

Application

Router (w/ Remos)

Figure 14. The Experimental Testbed.

36

To measure the effectiveness of our approach, we examined how often the latency of
any client exceeded two seconds, whether our repair was effective in reducing the latency
to the required bounds, and how this compared with the latency experienced when our
repairs were not conducted (the control). Because we used a network of machines, we
were unable to eliminate all of the variables between the control and our experiment runs.
However, we attempted to control as many variables as possible by: (1) seeding the
clients so that the size of requests and responses occurred in the same sequence in both
experiments, (2) executing a program that generates the same bandwidth competition for
each experiment, and (3) isolating the network from outside traffic and users.

To ensure that repairs occurred, we needed to arrange the bandwidth competition so
that there were periods of time where the bandwidth would cause the latency of some
clients to be high. Similarly, the clients were controlled so that they requested larger
amounts of information more frequently for a period of time. In this way, we ensured that
there were periods of time during which the assumptions made in architectural
performance analysis were invalid, and so that repairs were required.

The control and the experiment runs were executed under the conditions described
above for a period of thirty minutes each. Figure 15 shows the stepping functions we used
for generating bandwidth competition and server load. In the first two minutes, we ran the
system in a quiescent state to give our gauges, probes, and system time to deploy and
connect. In the following 8 minutes, we raised the bandwidth between the machines
running Clients 3 and 4 (C3&4) and the machines representing Server Group 1 (SG1). In
this period we would expect our repair strategies to migrate these clients to Server Group
2 (SG2). In the period 10 minutes to 20 minutes, we increased the server loads by
increasing the file request size and rate of messages sent from all clients (20KB, twice
every second), while reducing the bandwidth to SG1. In the final 10 minutes, we
increased the bandwidth between C3&4 and SG2. During the periods of high bandwidth
between C3&4 and their respective server groups, we maintained moderate bandwidth
(3Mbps) between the opposite server groups. We needed to restrict the competition in
this way because of the limited resources on our testbed. In future work, we plan to run
the experiments with more realistic bandwidth data, based on network traffic to Carnegie
Mellon’s web server.
Results

60 120 180

9Mbps 5Mbps

Time (seconds)
Figure 15. Bandwidth and Server Load Generation.

BW between
C3,C4 and SG1

BW between
C3,C4 and SG2

Filesize and
request rate,
from all clients.

20KB@>2/sec

2
Mbps

37

The results for the control run (without adaptation) are shown in Figure through

Figure . The average latency, shown in Figure , continues to rise. Once the latency rises
to above two seconds (at approximately 140 seconds for each client), it never falls below
this required threshold. This is because the server load and bandwidth never recover. In
Figure 17, the server load increases dramatically as the experiment progresses. (Note that
we measure server load by measuring the size of the queue of waiting client requests.)
Similarly, the available bandwidth falls dramatically as the experiment progresses, as
shown in Figure . The dashed line in both figures indicates the limits that we used to
decide which repair tactic to execute. In Figure 17, a queue size of greater than six
waiting requests indicated that the server was overloaded, and so the server repair should
be tried. In Figure , an available bandwidth of less than 10Kbps indicated that there was
not enough bandwidth. Note that for the control run, we overloaded the system so much
that it never recovers. However, toward the end of our run the servers actually begin to
recover.

0.1

1

10

100

1000

0 600 1200 1800

Time elapsed (s)

La
te

nc
y

(s
)

Figure 16. Average Latency for Control.

0.1

1

10

100

1000

10000

0 600 1200 1800

Time elapsed (s)

Q
ue

ue
 L

en
gt

h

Figure 17. Server Load for Control.

0.0001

0.001

0.01

0.1

1

10

0 600 1200 1800

Time elapsed (s)

A
va

ila
bl

e
B

an
dw

id
th

 (M
bp

s)

Figure 18.Available Bandwidth in Control.

Figure 19. Average Latency under Repair.

0.1

1

10

100

0 600 1200 1800

Time elapsed (s)

La
te

nc
y

(s
)

0.01

0.1

1

10

100

0 600 1200 1800

Time elapsed (s)

A
va

ila
bl

e
B

an
dw

id
th

 (M
bp

s)

Figure 21.Available Bandwidth with Repair.

0.1

1

10

100

0 600 1200 1800

Time elapsed (s)

Q
ue

ue
 L

en
gt

h
Figure 20. Server Load under Repair.

38

Figure 19 through Figure show the results obtained when our adaptation framework
and repair strategies were applied under the same conditions as the control. Figure 19
shows a dramatic improvement in the average latencies experienced by the clients. Once
our framework detects that client latency is above two seconds, a repair is invoked (either
to move a client or add a server), and this improves the system performance as predicted
by our design time analysis. In each of the figures for our experiment, the duration under
which a repair is running is indicated by the lines at the top of the graph.9 In fact, our
framework has a positive effect on the available bandwidth because we are taking better
advantage of different network links in our system after a repair. Our results for the
server load show a marked improvement over the course of the experiment, except during
the time that we increase the load on the server. During this time, we are continually
performing repair. These repairs, encouragingly, do have a positive effect on the overall
latency. Figure shows the server load experienced during the run. Note that the only
time that the server load rises above the constrained value is when we stress the servers.
Discussion

The experiment indicates that the architectural approach improves the performance of the
overall system, but further investigation is warranted under more realistic conditions.
Repairs were conducted automatically by the system as needed, and the latency
experienced by clients was less then two seconds for most of the time. In contrast, the
latency experienced in the control spent a considerable amount of time over two seconds.
When the system started to perform badly it continued to perform badly, and the
indications were that it only started to recover toward the end of our control run.

As noted, during the period of increased server load, repairs are continually
performed. Due to limited resources in our testbed, we were able to recruit only two extra
servers. Once these were activated (at times 700 seconds and 800 seconds) the only repair
possible was to move clients. During this period, we observed some oscillation, with
clients moving back and forth between server groups. This movement still had a positive
effect on the system, but we believe this is an artifact of the way we stressed the servers.
Recall that the servers were stressed by sending large amounts of data more frequently.
Of course, this also affects the bandwidth, and so the bandwidth repair does improve the
system.

In running this experiment we found a number of areas on which to concentrate future
work:

• The time that it takes to effect a repair averages 30 seconds. Most of this time
is spent in communicating to create and delete gauges. Improving this time by
caching gauges or relocating them (rather than destroying and creating new
ones) should see our repair speed improve dramatically.

• The same network is being used to monitor the system as to run it. This means
that when the available bandwidth is low, communication over our monitoring
system is correspondingly slow. This produces a lag in the time when the
bandwidth actually rises and the time it is noticed and repaired by our system.

9 The gradient in these lines merely clarifies the beginning and end of a repair.

39

One way to address this is to use network Quality of Service (QoS) techniques
to prioritize monitoring traffic.

• It is important to understand the underlying probe technology. The first
Remos query for information about bandwidth between two nodes on the
network takes several minutes because Remos needs to collect and analyze
data. After this initial delay, the query is quite fast. To reduce this effect, we
pre-queried Remos so that subsequent queries were much faster. Again, this
reduced the time of our repairs. In general, this points to the need for more
sophisticated probe technologies that need to be provided for caching or pre-
fetching this information.

• In some instances, the effects of a repair on a system will take time. For
example, adding a new server to a server group will not immediately reduce
the overall load on the server group. Without taking this effect into account,
unnecessary repairs are likely to occur (for example, to continue adding
servers or to move clients). This type of delay is something that can only be
gleaned from experience of running the repairs, and points to the need for a
more sophisticated repair engine that can monitor repairs and their effects, and
use this to adapt its repair policy.

Although we do not expect our approach to compete with hand-tailored, per-
application adaptation, we believe that this approach will save time in engineering
adaptation into applications that require it but do not possess it, in analyzing those
repairs, and in changing them as required. However, this would be moot if the repairs did
not improve the situation. These results show that we do get improvement by applying
our framework – how this improvement compares to hand-tailored adaptation is an area
of future work.

4.2. Performance Adaptation of GeoWorlds
In addition to the detailed case study described above, we have collaborated with
Columbia University and Information Sciences Institute to apply our technology to
provide load-balancing for GeoWorlds execution scripts. This is because a number of
these scripts rely on computationally-intensive services, and these scripts needed to be
made more resilient to service crashes and performance bottlenecks. Using probes
developed by Columbia for monitoring GeoWorlds, we developed gauges attached to an
architectural model of GeoWorlds that specified load constraints on the services. During
execution of services, if the Rainbow infrastructure detected that a service load exceeded
a threshold specified in the architectural model, Rainbow would conduct an architectural
repair. This architectural repair was then translated into system-level repairs (carried out
as workflakes [Workflakes]) on the GeoWorlds system.

5. Conclusions and Future Work
In this report, we outlined our research to generalize architecture-based dynamic
adaptation to enable significant improvement in our ability to detect run time properties
of complex, distributed systems, to determine whether those properties violate critical
assumptions of a running system, and to automate system adaptation and repair in

40

response to violations of architectural assumptions. We have shown how the notion of
software architecture needs to be modified to make it available at run time by providing
architecture operators and repair strategies. Furthermore, we have demonstrated the
effectiveness of this approach on a client-server example system and with a real-world
military intelligence system, GeoWorlds.

Much of the foundational work for the science behind this approach, in addition to
tool support to implement this science, has been conducted as part of the DASADA
program. However, this research points the way to additional future work that could be
carried out, for example:

• Develop methodologies and tool support for dynamically determining the
architecture of a running system. The implementation of our approach has so
far assumed that the architecture of the system is known. We detail the
beginnings of research to dynamically detect architectures in [24].

• Provide tool support for specifying architectural repairs. Currently, we have a
design for a repair language that can be used to specify strategies for repairing
a system. In our implementations so far, we have hand-translated these into an
associated implementation. We are investigating tool support, integrated with
our architecture tools, to allow a designer to specify repair strategies in our
repair language.

• Investigate smarter repair engines. Our implementation of Tailor provides
simple support for executing repairs. In combination with the future work
mentioned above, in addition to further research in planning and learning, it
will be feasible to modify Tailor so that it has a more flexible means for
determining which repair tactic to execute, it is able to detect whether a repair
strategy is effected in the running system, and to provide some history and
analyses of which repairs have been most effective in past repairs of the
system.

6. Publications
• "DiscoTect: A System for Discovering Architectures from Running Systems,"

Hong Yan, David Garlan, and Bradley Schmerl. Accepted at the 26th
International Conference on Software Engineering, Edinburgh, Scotland, May 23-
28, 2004.

• "AcmeStudio: Supporting Style-Centered Architecture Development," Bradley
Schmerl, and David Garlan. Accepted at the 26th International Conference on
Software Engineering, Edinburgh, Scotland, May 23-28, 2004.

• "Increasing System Dependability through Architecture-based Self-repair," David
Garlan, Shang-Wen Cheng, and Bradley Schmerl, in Architecting Dependable
Systems, R. de Lemos, C. Gacek, A. Romanovsky (Eds), Springer-Verlag, 2003.

• "A Compositional Formalization of Connector Wrappers," Bridget Spitznagel,
and David Garlan, The 2003 International Conference on Software Engineering
(ICSE'03), Portland, Oregon, USA, May 3 - 10, 2003.

41

• "Software Architecture-based Adaptation for Grid Computing," Shang-Wen
Cheng, David Garlan, Bradley Schmerl, Peter Steenkiste, and Ningning Hu, The
11th IEEE Conference on High Performance Distributed Computing (HPDC’02),
Edinburgh, Scotland, July 2002.

• "Using Architectural Style as a Basis for Self-repair," Shang-Wen Cheng, David
Garlan, Bradley Schmerl, João Pedro Sousa, Bridget Spitznagel, and Peter
Steenkiste, Software Architecture: System Design, Development, and
Maintenance (Proceedings of the 3rd Working IEEE/IFIP Conference on
Software Architecture) Jan Bosch, Morven Gentleman, Christine Hofmeister,
Juha Kuusela (Eds), Kluwer Academic Publishers, August 25-31, 2002. pp. 45-
59.

• "Exploiting Architectural Design Knowledge to Support Self-repairing Systems,"
Bradley Schmerl, and David Garlan, The 14th International Conference on
Software Engineering and Knowledge Engineering, Ischia, Italy, July 15-19,
2002.

• "Reconciling the Needs of Architectural Description with Object-Modeling
Notations," David Garlan, Andrew J. Kompanek, and Shang-Wen Cheng, Science
of Computer Programming Volume 44, Elsevier Press, pp. 23-49.

• "Using Gauges for Architecture-Based Monitoring and Adaptation," David
Garlan, Bradley Schmerl, and Jichuan Chang, In the Working Conference on
Complex and Dynamic Systems Architecture, Brisbane, Australia, 12-14
December, 2001.

• "A Compositional Approach for Constructing Connectors," Bridget Spitznagel,
and David Garlan, The Working IEEE/IFIP Conference on Software Architecture
(WICSA'01), Royal Netherlands Academy of Arts and Sciences Amsterdam , The
Netherlands, August 28-31, 2001.

References
1. Allen, R.J. A Formal Approach to Software Architecture. PhD Thesis, published as

Carnegie Mellon University School of Computer Science Technical Report CMU-
CS-97-144, May 1997.

2. Allen, R.J., Douence, R., and Garlan, D. Specifying Dynamism in Software
Architectures. Proc. the Workshop on Foundations of Component-Based Software
Engineering, Sept. 1997.

3. Carzaniga, A., Rosenblum, D.S., and Wolf, A.L. Achieving Expressiveness and
Scalability in an Internet-Scale Event Notification Service. Proc. the Nineteenth ACM
Symposium on Principles of Distributed Computing (PODC2000), Portland OR, Jul.
2000.

4. Dashofy, E., Garlan, D., van der Hoek, A., and Schmerl, B.
http://www.ics.uci.edu/pub/arch/xarch/.

42

5. Dashofy, E., van der Hoek, A., and Taylor, R.N. A Highly-Extensible, XML-Based
Architecture Description Language. Proc. the Working IEEE/IFIP Conference on
Software Architecture, Amsterdam, The Netherlands, Aug. 2001.

6. Garlan, D., Allen, R.J., and Ockerbloom, J. Exploiting Style in Architectural Design.
Proc. the SIGSOFT '94 Symposium on the Foundations of Software Engineerng, New
Orleans, LA, Dec. 1994.

7. Garlan, D., Monroe, R.T., and Wile, D. Acme: Architectural Description of
Component-Based Systems. Foundations of Component-Based Systems. Leavens,
G.T., and Sitaraman, M. (eds). Cambridge University Press, 2000 pp. 47-68.

8. Gorlick, M.M., and Razouk, R.R. Using Weaves for Software Construction and
Analysis. Proc. the 13th International Conference on Software Engineering, IEEE
Computer Society Press, May 1991.

9. Heineman, G. Adaptation and Software Architecture. Proc. 3rd Annual International
Workshop on Software Architecture (ISAW-3), pages 61-64, November 1998.
Orlando, Florida.

10. Lowekamp, B., Miller, N., Sutherland, D., Gross, T., Steenkiste, P., and Subhlok, J.
A Resource Query Interface for Networ-aware Applications. Cluster Computing,
2:139-151, Baltzer, 1999.

11. Magee, J., and Kramer, J. Concurrency: State Models and Java Programs. Wiley,
1999.

12. Magee, J., Dulay, N., Eisenbach, S., and Kramer, J. Specifying Distributed Software
Architectures. Proc. the 5th European Software Engineering Conference (ESEC '95),
Sitges, Sept. 1995. Also published as Lecture Notes in Computer Science 989,
(Springer-Verlag), 1995, pp. 137-153.

13. Monroe, R.T. Capturing Software Architecture Design Expertise with Armani.
Carnegie Mellon University School of Computer Science Technical Report CMU-
CS-98-163.

14. Moriconi, M. and Reimenschneider, R.A. Introduction to SADL 1.0: A Language for
Specifying Software Architecture Hierarchies. Technical Report SRI-CSL-97-01, SRI
International, Mar. 1997.

15. The OpenGroup. Architecture Description Markup Language (ADML) Version 1.
Apr. 2000. Available at http://www.opengroup.org/publications/catalog/i901.htm.

16. Oriezy, P., Medvidovic, N., and Taylor, R.N. Architecture-Based Runtime Software
Evolution. Proc. the International Conference on Software Engineering 1998
(ICSE'98). Kyoto, Japan, Apr. 1998, pp. 11—15.

17. Oriezy, P., Gorlick, M.M., Taylor, R.N., Johnson, G., Medvidovic, N., Quilici, A.,
Rosenblum, D., and Wolf, A. An Architecture-Based Approach to Self-Adaptive
Software. IEEE Intelligent Systems 14(3):54-62, May/Jun. 1999.

18. Spitznagel, B. and Garlan, D. Architecture-Based Performance Analysis. Proc. the
1998 Conference on Software Engineering and Knowledge Engineering, Jun. 1998.

43

19. Taylor, R.N., Medvidovic, N., Anderson, K.M., Whitehead, E.J., Robbins, J.E., Nies,
K.A., Oreizy, P., and Dubrow, D.L. A Component- and Message-Based Architectural
Style for GUI Software. IEEE Transactions on Software Engineering 22(6):390-406,
1996.

20. Vestel, S. MetaH Programmer’s Manual, Version 1.09. Technical Report, Honeywell
Technology Center, Apr. 1996.

21. Wells, D., and Pazandak, P. Taming Cyber Incognito: Surveying Dynamic /
Reconfigurable Software Landscapes. Proc. the 1st Working Conference on Complex
and Dynamic Systems Architectures, Brisbane, Australia, Dec 12-14, 2001.

22. Wermelinger, M., Lopes, A., and Fiadeiro, J.L. A Graph Based Architectural
(Re)configuration Language. Proc. the Joint 8th European Software Engineering
Conference and the 9th ACM SIGSOFT Symposium on the Foundations of Software
Engineering. Vienna, Austria, Sep. 2001, pp. 21—32.

23. Wile, D.S. AML: An Architecture Meta-Language. Proc. the Automated Software
Engineering Conference, Cocoa Beach, FL, Oct. 1999.

24. Yan, H., Garlan, D., and Schmerl, B. DiscoTect: A System for Discovering
Architectures from Running Systems. Proc. 26th International Conference on
Software Engineering, Edinburgh, Scotland, May 23-28, 2004.

